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Abstract

Race models of decision making, such as the linear ballistic accumulator (LBA), log-normal race

(LNR) and the racing diffusion model (RDM) are widely used to model response times (RTs) and

choices as a race between choice options. These models assume the shapes of the RT distributions

to reflect latent parameters, such as a participant’s tendency to emphasize accuracy over speed.

Since RT data often does not reflect the full RT distribution due to missing data from trial

timeouts, outlier removal, or other limitations, which affects the parameter recovery for these

models. While missing data is commonly handled by truncation—excluding the missing trials

from the analysis—it can also be handled by censoring, which takes the proportion of missing

trials into account. In two simulation studies, the parameter recovery for these methods are

compared for the LBA, LNR, and RDM. In the first simulation study, we showed how upper

truncation biases parameter estimation for all models, while censoring had good parameter

identifiability with the large sample size used. In a second simulation with a smaller number of

trials, censoring had better parameter recovery in some cases, particularly when the lower tail was

missing, while in other cases the parameter recovery of censoring and truncation were not notably

different. These results suggest that censoring should be preferred over truncation when the

objective is accurate parameter estimation, but since censoring is computationally costly,

truncation can be admissible in some analyses with a small number of trials.

Keywords: censoring, truncation, missing data, evidence accumulation, choice response

data, diffusion decision model, linear ballistic accumulator, Bayesian hierarchical modeling.

decision making
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Estimating the Unobserved: A Simulation Study on Censoring and Truncation in Race

Models of Choice and Response Time

Many paradigms in experimental psychology involve speeded decision-making. There are

two main outcome variables to these tasks: what choice someone made (or whether this matches

the corresponding stimulus), and how fast someone made their choice. Researchers are often

interested in the conditions that affect these decisions and response times (RTs).

A problem arises when we want to make comparisons about performance on a task.

Someone might be quicker to respond—indicating better performance, but at the same time they

might be less accurate—indicating worse performance. This is commonly referred to as the speed

accuracy trade-off, which complicates inferences on task performance.

A wide range of evidence accumulation models (EAMs) aim to model the cognitive

processes behind decision making as noisy accumulation of evidence until a decision threshold is

reached. This means that how fast a participant is able to accumulate evidence towards a choice

(the evidence accumulation rate or drift rate) is modeled separately from a participants’ tendency

to value speed over accuracy or vice versa (the threshold or speed-accuracy tradeoff). In addition

to these decisional variables, EAMs often estimate the time it takes for non-decisional processes

like stimulus encoding or the motor response to occur (non-decision time), and they account for

the variability within and between trials, as well as response bias.

This paper will focus on three prominent EAMs that are supported by the EMC2 package

(Stevenson et al., 2024): the Linear Ballistic Accumulator (LBA; Brown & Heathcote, 2008), the

Racing Diffusion Model (RDM; Tillman et al., 2020), and the Log-Normal Race (LNR;

Heathcote & Love, 2012). These models are race models, which model separate accumulators for

each choice option, with the first accumulator to reach a threshold resulting in the choice. The

time that it takes for this accumulator to reach the threshold is the decision time.

The LBA (Brown & Heathcote, 2008) models RTs and responses as a race between

deterministic linear accumulators, with the slope for an accumulator drawn from a normal

distribution, N(𝑣, 𝑠2
𝑣), where 𝑣 is the mean evidence accumulation rate and 𝑠2

𝑣 the between-trial
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variance of the evidence accumulation rate. The intercept also has between-trial variation and is

drawn from a uniform distribution U(0, 𝐴). The distance from 𝐴 to the threshold 𝑏 is called 𝐵,

and can be understood as caution, or the tradeoff between speed and accuracy. The time it takes

for non-decsisional processes like motor response and stimulus encoding are estimated as a sigle

non-decision time parameter, 𝑡0. The line that intersects the threshold at the lowest time

determines the decision made, and the timepoint of the intersection added to 𝑡0 is the RT (Brown

& Heathcote, 2008; see Figure 1).

The RDM (Tillman et al., 2020) has a similar set of parameters, but instead of having

between-trial variation in evidence accumulation rate, the RDM has continuous normally

distributed variation within each trial. In the simulation studies in this paper, starting point

variability 𝐴 is taken out as it is often not a necessary parameter for the RDM to account for

common decisional phenomena (Tillman et al., 2020; see Figure 1).

Lastly, the LNR (Heathcote & Love, 2012) is a race between random samples from

log-normal distributions, with the lowest sample determining the choice and decision time, which

is then added to non-decision time 𝑡0 to constitute the RT. This means that the LNR has three main

parameters: the scale 𝑚 of the lognormal, the shape 𝑠 of the lognormal, and the non-decision time

𝑡0. The LNR can not distinguish between the threshold and the accumulation rate, so it does not

rest on latent assumptions about the accumulation process (Heathcote & Love, 2012; see

Figure 1).

Each of these race models have defined probability density functions 𝑝(𝑡 | 𝜽) and

cumulative density functions 𝑃(𝑡 | 𝜽) for the finishing time of a single accumulator. To compute

the likelihood of parameter vector 𝜽 with winning accumulator 𝑖 at time 𝑡, we can take the

probability density for the winning accumulator 𝑝(𝑡 | 𝜽𝑖), and multiply it by the probability that

none of the other accumulators 𝑗 finish before time 𝑡:

L(𝜽 | 𝑡, 𝑖) = 𝑝(𝑡 | 𝜽𝑖)
∏
𝑗≠𝑖

1 − 𝑃(𝑡 | 𝜽 𝑗 ), (1)

which is the “defective distribution” for 𝑖 when written as a function of 𝑡, meaning that it

integrates to the probability of response 𝑖.
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Complicating the estimation of speeded decision making models, RTs and choices are

often missing on certain trials by design. A researcher may want to limit slow RTs in their

experiment design, for example to reduce slow type II thinking (Evans, 2003), or to emphasise

speed. Alternatively, researchers may want to remove outlying responses that cannot have come

from the process of interest (e.g., a response 0.05 seconds after stimulus onset, which is too fast

for a decision making process to occur).

There are two main ways to handle missing values: truncation, which discards missing

values with no assumption of the underlying distribution, and censoring, which assumes the

proportion of missing values to reflect the true distribution, and takes this into account in the

model estimation.

Although truncation could potentially improve parameter estimates by eliminating

irrelevant outliers, outlier removal often increases estimation bias by excluding extreme but valid

RTs (Dolan et al., 2002; Miller, 2023; Ratcliff, 1993; Ulrich & Miller, 1994). Even less extreme

values might be truncated in experiments with short time windows, leading to even worse

estimates. Figure 2 illustrates how upper truncation might distort parameter estimation in a simple

two forced choice decision task with slow errors. Trials with slower accumulation rates—which

tend to result in more incorrect trials—get discarded, while trials with higher accumulation rates

are used to estimate the underlying parameters.

Despite the issues, researchers often use truncation for missing RTs, perhaps because of

common practice, or because computing the likelihood for a censored RT requires computing the

area under the curve of the likelihood function over the censored range. For race models, this

means that we integrate Equation 1 over the censored time range 𝑅:

L(𝜽 | 𝑡 ∈ 𝑅, 𝑖) =
∫
𝑅
𝑝(𝑡 | 𝜽𝑖)

∏
𝑗≠𝑖

1 − 𝑃(𝑡 | 𝜽 𝑗 ) 𝑑𝑡. (2)

Since censoring in maximum likelihood estimation and Markov chain Monte Carlo methods

require numerically computing this integral for many iterations, censoring is often slow.

Equation 2 can be extended to accomodate missing responses in addition to missing RTs

by summing Equation 2 for each accumulator, resulting in the total probability of any response in
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time range 𝑅. Similarly, if we censored both fast and slow responses with no distinction between

the two, we can sum the integrals over the lower and the upper range. We can even combine

censoring and truncation with

L(𝜽 | 𝑡 ∈ 𝑅, 𝑖) L(𝜽 | 0 ≤ 𝑡 < ∞, 𝑖)
L(𝜽 | 𝑡 ∈ 𝑆, 𝑖) , (3)

where 𝑆 is the range of all untruncated values.

Although censoring has been shown to result in better parameter recovery than truncation

in common RT distributions (Dolan et al., 2002), a difference in parameter recovery has not yet

been established for race models. As data are routinely censored or truncated, this study compares

censoring and truncation on parameter recovery at different levels of missingness, for the LBA,

LNR, and RDM. Parameter estimates are expected to deteriorate at a higher rate for truncation

than for censoring, with increases in the proportion of missing RTs.

Methods

We compared censoring and truncation in two simulation studies. The first study

compared upper censoring and truncation with the responses known with a large number of

samples to assess asymptotic parameter identifiability. The second study assessed parameter

recovery on a smaller number of trials to evaluate the practical differences between censoring and

truncation, comparing a larger number of missing data scenarios.

To assess parameter identifiability, we first simulated data using known parameters, which

we then fit the same model to. This allows us to compare the known, “true” parameter values with

our fitted parameter values. The code for all analyses and data generation are available on

https://github.com/timmerj1/censoring-truncation-study-EAMs.

For both simulation studies, a simple model with two stimuli and two racers was used to

generate the data. Conventional constants for the LBA’s (𝑠𝑣 = 1) and the RDM’s drift rate

variance (𝑠 = 1) were used to generate and fit the data. Parameter values were chosen to reflect

common RT and choice distributions in simple two forced choice tasks (see Table 1 for an

overview of parameters used). For the LBA, decision thresholds were defined with 𝐵 = 𝑏 − 𝐴. As
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is the default in EMC2, parameters on the positive real line were log transformed. Data was

generated using the make_data function from EMC2 (Stevenson et al., 2024).

For the first simulation, upper censoring and truncation were compared using a large

number of trials (20,000 trials, 10,000 per stimulus) to investigate the differences between

censoring and truncation without fits being affected by random error. RTs were cut off at three

different levels: at 2.5%, 10%, and 30% of upper values, with cutoff points estimated in a separate

simulation with the same number of trials. Responses were not missing for any of the censored

values. For each combination of model and missing level, new data was simulated, but censoring

and truncation were compared on the same datasets to ensure differences cannot be caused by

random sampling error.

In the second simulation, a factorial design was used to vary whether responses were

known or unknown, which tail missed response times (lower, upper, or both tails), the percentage

of missing responses (2%, 10%, 30%, or 50%), and whether missing responses were censored or

truncated. For each condition, ten samples with a small number of trials (400 trials) were

simulated and fit. Missing level cutoffs were chosen using the quantiles on a non-missing

simulation with 4000 trials.

Parameter posteriors were sampled using the particle Metropolis within Gibbs (PMwG;

Kuhne et al., 2024) sampler in EMC2 (Stevenson et al., 2024) using its default (standard normal)

priors for non-hierarchical estimation. Three PMwG chains were sampled for each parameter,

with 50 particles per parameter (Kuhne et al., 2024).

To assess parameter recovery, we used the Root Mean Squared Errors (RMSEs) between

the posterior medians 𝜽 and the true parameters 𝜽:

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1

(𝜃𝑖 − 𝜃𝑖)2. (4)

Since we used Bayesian methods, the parameter estimates are not restricted to point

estimates. We will compute the quadratic Wasserstein distance 𝑊2 between the full posterior 𝑃
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samples 𝑋1, ..., 𝑋𝑛𝑃 and Dirac point mass distribution 𝛿𝜽 at the true parameters 𝜽:

𝑊2(𝛿𝜽 , 𝑃) =

√√
1
𝑛𝑃

𝑛𝑃∑
𝑖=1

∥𝑋𝑖 − 𝜽 ∥2. (5)

The double vertical bars indicate the distance in vector space, as the Wasserstein distance can be

taken for the full model using the Euclidean distance, and for the separate parameters with

unidimensional distance (since the difference is squared, no vertical bars are needed).

The quadratic Wasserstein distance is affected by both the position and the scale of the

posterior. The quadratic Wasserstein over a single dimension becomes an unbiased estimate of the

standard deviation of 𝑃 when 𝜃 is the mean of 𝑃, and it simplifies to the RMSE when 𝑃 is at a

single point. This makes the quadratic Wasserstein distance an interesting Bayesian alternative to

the RMSE, measuring the distance between the full posterior and the true parameter.

For completeness, additional Pearson’s correlation coefficients and mean absolute errors

were computed, but since these did not differ substantially from the RMSE and 𝑊2, these statistics

were plotted in the appendix. Parameters that were log transformed to be estimated on the real

scale were not transformed back when computing these statistics.

Results

Study 1

Figure 3 shows the RMSE between the true parameter values and the medians of the

posterior distribution for each fit. As expected, both distance measures RMSE and 𝑊2 increased

with an increase of missing RTs for truncation. For censoring, the distance measures stay closer to

0 and do not clearly increase when data is censored rather than truncated. This indicates that

censoring improved the parameter recovery in an asymptotic fit as expected. The only case where

censoring does not seem to outperform truncation is for the RDM, where 2.5% truncation did not

perform worse than 2.5% censoring. With higher missing percentages, censoring still

outperformed truncation for the RDM.

Looking at the credible intervals for each parameter in Figure 4, the generally higher

RMSE for RDMs is explained by a general tendency for 𝐵 and 𝑣 to be overestimated, while 𝑣𝑤𝑖𝑛
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and 𝑡0 are underestimated. Overall, these parameters still seem to be recovered better with

censoring than with truncation, except that 𝑡0 and 𝑠𝑤𝑖𝑛 were recovered slightly better for truncation

at a low percentage in this simulation. For the other models, censoring clearly performs better

than truncation, with true parameters included by most credible intervals for censoring, while

most truncation credible intervals exclude the true parameters. The main exception to this is the

𝑠𝑤𝑖𝑛 parameter for the LNR, where the credible interval for 30% censoring does not include the

true parameter value.

Overall, these results indicate that upper censoring results in better parameter recovery

than upper truncation in an asymptotic sample, i.e. with a large number of trials. This cannot yet

be generalized to smaller sample sizes, as random error and parameter tradeoffs might affect

parameter recovery more than censoring versus truncation does. Moreover, one might want to use

lower censoring or truncation instead, or a combination of lower and upper censoring or

truncation. Lastly, in this simulation the responses were known. Often censoring or truncation is

implemented when there is a response time window, where neither the RTs or the choices are

recorded. To account for these issues, the second simulation study takes these factors into account

by using a smaller number of trials (200 instead of 1000 trials), in a 2 × 2 × 3 × 3 × 4 design:

censoring versus truncation, known versus unknown, lower versus upper versus both tails missing,

LBA versus LNR versus RDM, and 2%, 10%, 30%, and 50% censoring or truncation.

Study 2

Linear Ballistic Accumulator Model

Contrary to the first study, upper censoring with responses known did not have better

parameter recovery than upper truncation for the LBA. Figure 5 shows similar RMSEs and 𝑊2s

for all upper censoring and truncation, both getting worse with higher missing percentages.

Contrary to this, fits for the lower tail clearly diverge with increasing missing percentages, with

censoring outperforming truncation. Interestingly, upper tail censoring and truncation both seem

to perform on par with lower tail censoring, with relatively low RMSE and 𝑊2. Censoring on both

tails resulted in similar RMSE and 𝑊2 compared to truncation, but censored RMSEs and 𝑊2s
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were generally lower.

Figure 6 shows the 𝑊2 for each LBA parameter. In accordance with Figure 5, lower

censoring resulted in similar or lower 𝑊2s than lower truncation. Especially the boundary 𝐵,

non-decision time 𝑡0, and mean evidence accumulation rate 𝑣 showed better parameter recovery

for censoring compared to truncation when responses are unknown, while lower censoring with

responses known improved parameter recovery for all parameters. With both tails missing,

censoring showed better parameter recovery than truncation for most parameters, but worse

recovery for starting point variability 𝐴 and mean evidence accumulation rate 𝑣, explaining the

similar RMSE and 𝑊2 in Figure 5. Lastly, when the upper tail was missing, truncation recovered

the parameters similarly to censoring, with truncation showing better parameter recovery of

starting point variability 𝐴.

Log-Normal Race Model

For the LNR, both upper and lower censoring showed better parameter recovery as

expected. For the lower and upper tail simulation, Figure 7 shows the expected pattern of

increasing RMSEs and 𝑊2s for truncation while censoring RMSEs and 𝑊2s remain low.

Unexpectedly, missing values in both tails did not result in the same clear pattern, especially for

𝑊2. This difference between RMSEs and 𝑊2 indicate that although the medians of censoring

posterior distributions were closer to the true parameter values, the complete posteriors had

similar distances to the true parameter values for censoring compared to truncation.

Looking at the parameter 𝑊2s in Figure 8, we see that lower truncation particularly

deteriorated the estimates for the log-normal 𝜇 estimates 𝑚 and 𝑚𝑡𝑟𝑢𝑒, and non-decision time 𝑡0

compared to lower censoring, whereas upper truncation deteriorated the estimates for log-normal

𝜎 estimate 𝑠 and 𝑡0 compared to upper censoring. Surprisingly, 𝑊2s for 𝑡0 estimates were worse

for upper truncation than lower truncation, even though non-decision time is largely reflected by

the minimum RT. When responses were unknown, lower and two-tailed censoring had worse

parameter recovery for 𝑠𝑡𝑟𝑢𝑒 than truncation. Two-tailed censoring recovered 𝑚 and 𝑠 better than

two-tailed truncation, but resulted in recoveries that were similar to truncation for the other
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parameters.

Racing Diffusion Model

Like the LBA, Figure 9 shows higher RMSEs and 𝑊2s for lower truncation compared to

lower censoring, while upper and two-tailed censoring show similar, lower RMSEs and 𝑊2s

compared to truncation. Only when responses were known, upper tail censoring resulted in lower

RMSE and 𝑊2 than truncation, but without a clear separation.

The parameter 𝑊2s shown in Figure 10 also showed a similar pattern to the LBA. Lower

tail truncation mainly affected the boundary parameter 𝐵, the non-decision time 𝑡0, and the drift

rates 𝑣 and 𝑣𝑡𝑟𝑢𝑒 compared to lower censoring. The 𝑊2s for the drift rate of the incorrect option, 𝑣,

was increasing for truncation compared to censoring, regardless of the tail or whether responses

were known. For the other parameters, upper tail and two-tailed censoring was not particularly

better or worse than truncation, with an exception of the recovery of 𝐵 and 𝑣𝑡𝑟𝑢𝑒 for upper tail

censoring with responses known.

Discussion

We compared censoring and truncation for three different race models: the linear ballistic

accumulator model, the log-normal race model, and the racing diffusion model. To this end, we

simulated data using pre-specified parameter values, with missing data cutoffs based on quantiles.

The first simulation study compared asymptotic parameter recovery upper censoring and

truncation with responses known. The second simulation used several smaller datasets for each

condition in a factorial design. It compared lower, upper and two-tailed censoring or truncation,

with either results known or unknown.

In the first simulation, parameters were recovered well for censoring, while parameters

estimated with truncation were considerably off, even at lower percentages of missingness. Only

for the RDM, 2.5% truncation was on par with censoring. The RDM had worse parameter

recovery than the other two models in general, with credible intervals for some parameters

missing the true parameter for each level of censoring or truncation. Censoring still outperformed

truncation in the RDM for higher percentages of missing RTs.
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The second simulation showed that the previous results did not hold with smaller sample

sizes for the LBA and RDM. However, lower truncation did result in worse parameter recovery

than censoring. For the LNR, upper and lower truncation both resulted in better recovery than

truncation, but two-tailed truncation was closer to censoring in terms of parameter recovery.

The results indicate that censoring asymptotically improves parameter recovery. In smaller

numbers of trials, however, differences between censoring and truncation can become

inconsequential compared to random sampling error.

Since parameter recovery for censoring was not worse than for truncation, censoring

should be preferred if parameter recovery is the only consideration. When computation time and

resources are relevant factors, however, censoring might not always be worth the cost. When

responses were unknown, resulting in a higher number of numerical integrals for each likelihood

calculation, the PMwG sampler took more than 28 hours in an extreme case in the second

simulation. In less extreme cases with responses known, this time was closer to 15 minutes.

To speed up the MCMC sampling for censoring, the likelihood function for censoring was

translated from R to Rcpp. This approximately doubled the speed. In the Rcpp likelihood

function, numerical integration was implemented with RcppNumerical Qiu et al. (2023), an Rcpp

library for numerical integration and optimization. Although this results in faster likelihood

estimations than with the integrate function in R, the computation time is still considerable. To

make censoring more worthwhile, changing to a faster quadrature rule that does not have to work

for complicated multimodal functions might be beneficial.

The simulations in this paper all used non-hierarchical models. Since the second

simulation seems to have been more affected by random error than by truncation, future

simulations might use hierarchical modeling, which is less affected by random error for single

participants, but instead shrinks more extreme values to group level means (Efron & Morris,

1977), making the inference more robust against random sampling error. Hierarchical models are

increasingly used and it remains unclear how censoring and truncation affects hierarchical race

model estimation.
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Future studies might also investigate how censoring and truncation compare to baseline

race model fits, as this study only focused on the comparison between censoring and truncation.

Furthermore, simulation-based calibration (Talts et al., 2020) might be used to check whether race

model estimation using censoring and truncation appropriately reflect the uncertainty of the

posterior.

Another avenue that remains uninvestigated is how contamination ties into censoring and

truncation. Since truncation can remove outliers, truncation could potentially lead to better

parameter recovery than censoring would in the presence of contaminant RTs. On the other hand,

MCMC methods also allow for the explicit modeling of contaminants. The likelihood function

that was implemented in EMC2 allows for combinations of censoring, truncation, and explicit

contaminant modeling, and future simulations could investigate how combinations of these

methods might lead to better parameter recovery.

How researchers handle outliers and missing data can greatly affect the outcomes of their

research. Our results suggest that ignoring values outside of a prespecified response window or

outside of common outlier thresholds can bias race model estimates. Although censoring can be

computationally costly, it should be the default over truncation when the objective is accurate

estimation of latent cognitive parameters.
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Table 1

Race Model Simulation Parameters

LBA LNR RDM

Parameter Value Parameter Value Parameter Value

𝐵 2 𝑚 0.75 𝐵 3

𝑣 3 𝑚𝑡𝑟𝑢𝑒 0.65 𝑣 1

𝑣𝑡𝑟𝑢𝑒 1 𝑠 0.5 𝑣𝑡𝑟𝑢𝑒 4

𝐴 2 𝑠𝑡𝑟𝑢𝑒 0.8 𝑠𝑡𝑟𝑢𝑒 0.75

𝑠𝑣𝑡𝑟𝑢𝑒 0.75 𝑡0 0.4 𝑡0 0.2

𝐵 2
Note. The parameters that were used to simulate the response time and choice data. Parameters

on the real positive line are estimated on a log scale in EMC2. Subscript ‘true’ relates to a match

between stimulus and choice (a correct choice is made), and these parameters are added to the

corresponding parameter for the non-matching racer.
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Figure 1

Simple Race Model Illustrations
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Note. The dynamics of the race models in this paper are illustrated here. The Linear Ballistic Ac-

cumulator (LBA) accumulates evidence in a linear deterministic fashion, with normally distributed

variability 𝑠2
𝑣 in slope 𝑣 and uniformly distributed variability 𝐴 in starting point between trials. The

Racing Diffusion Model (RDM) has continuous normally distributed variance 𝑠2
𝑣 within the trial

instead (diffusion), and can include starting point variability between trials like the LBA, although

this is not the case for simulations in this paper. The Log-Normal Race (LNR) samples accumula-

tion times (vertical lines) from log-normal distributions, with the shortest accumulation time (solid

vertical lines) determining the choice and the decision time. For all models, the duration of non-

decision processes like stimulus encoding and responding are captured by 𝑡0.
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Figure 2

Illustration of Missing Upper Response Times in the Linear Ballistic Accumulator
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Note. This figure illustrates how upper censoring and truncation relate to the LBA and the defective

density. Dashed lines represent the cognitive dynamics behind missing RT trials and the missing

tails of the defective densities. Truncation discards the corresponding data completely, while cen-

soring uses the shaded areas under the defective density curves when computing the likelihood of

the parameter estimates.
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Figure 3

RMSE and 𝑊2 for Upper Censoring
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Note. For each model and each level of missingness, the root mean squared errors (RMSE) and

quadratic Wasserstein distances (𝑊2) were computed and plotted. Lower RMSE and 𝑊2 indicate

better parameter recovery.
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Figure 4

Parameter Recoveries and 95% CIs for Upper Censoring and Truncation
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Note. Race model recoveries for the linear ballistic accumulator model (LBA), the log-normal race

model (LNR) and the racing diffusion model (RDM) with 2%, 10%, or 30% missing. Dots are

placed at the posterior median, and error bars denote the 95% equal-tailed credible intervals of the

parameter posteriors. The dashed vertical lines represent the true parameter values.
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Figure 5

Model RMSE and 𝑊2 for the LBA
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Note. Root mean squared errors (RMSE) and quadratic Wasserstein distances (𝑊2) over all param-

eters for the linear ballistic accumulator model (LBA). Colors denote whether missing RTs were

censored or truncated. Points were randomly horizontally shifted to avoid overlap. Lower RMSE

and 𝑊2 indicate better parameter recovery.
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Figure 6

𝑊2 by Parameter for the LBA
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Note. Quadratic Wasserstein distances (𝑊2) between the true linear ballistic accumulator (LBA)

parameters and each parameter posterior for each dataset. Each LBA parameter is represented by

a different plot row labeled on the right, while each combination of tail and response condition is

represented by the columns. Colors denote whether missing RTs were censored or truncated. Points

were randomly horizontally shifted to avoid overlap. Lower𝑊2 indicates better parameter recovery.
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Figure 7

Model RMSE and 𝑊2 for the LNR
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Note. Root mean squared errors (RMSE) and quadratic Wasserstein distances (𝑊2) over all param-

eters for the log-normal race model (LNR). Colors denote whether missing RTs were censored or

truncated. Points were randomly horizontally shifted to avoid overlap. Lower RMSE and 𝑊2 indi-

cate better parameter recovery.
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Figure 8

𝑊2 by Parameter for the LNR

Response: unknown Response: known

Tail: both Tail: lower Tail: upper Tail: both Tail: lower Tail: upper

m

mtrue

s

strue

t0

2% 10
%

30
%

50
%

2% 10
%

30
%

50
%

2% 10
%

30
%

50
%

2% 10
%

30
%

50
%

2% 10
%

30
%

50
%

2% 10
%

30
%

50
%

0.25

0.50

0.75

0.25

0.50

0.75

0.3

0.6

0.9

0.2

0.4

0.6

0.5

1.0

Missing

W
2

Truncated Censored

Note. Quadratic Wasserstein distances (𝑊2) between the true log-normal race (LNR) parameters

and each parameter posterior for each dataset. Each LNR parameter is represented by a different

plot row labeled on the right, while each combination of tail and response condition is represented

by the columns. Colors denote whether missing RTs were censored or truncated. Points were

randomly horizontally shifted to avoid overlap. Lower 𝑊2 indicates better parameter recovery.
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Figure 9

Model RMSE and 𝑊2 for the RDM
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Note. Root mean squared errors (RMSE) and quadratic Wasserstein distances (𝑊2) over all param-

eters for the racing diffusion model (RDM). Colors denote whether the missing RTs were censored

or truncated. Points were randomly horizontally shifted to avoid overlap. Lower RMSE and 𝑊2

indicate better parameter recovery.
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Figure 10

𝑊2 by Parameter for the RDM
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Note. Quadratic Wasserstein distances (𝑊2) between the true racing diffusion model (RDM) pa-

rameters and each parameter posterior for each dataset. Each RDM parameter is represented by

a different plot row labeled on the right, while each combination of tail and response condition

is represented by the columns. Colors denote whether missing RTs were censored or truncated.

Points were randomly horizontally shifted to avoid overlap. Lower 𝑊2 indicates better parameter

recovery.
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Appendix

Supplementary Materials

Study 1

Figure A1

MAE for Upper Censoring
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Note. For each model and each level of missingness, the mean absolute error (MAE) is plotted.

Lower MAE indicates better parameter recovery.

Study 2

Linear Ballistic Accumulator Model

Model Distances.

Credible Intervals.
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Figure A2

Pearson Correlations for Upper Censoring
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Note. For each model and each level of missingness, the Pearson correlation (R) is plotted. Higher

R indicates better parameter recovery.
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Figure A3

MAEs for the LBA
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Note. Mean absolute errors over all parameters for the linear ballistic accumulator model (LBA).

Colors denote whether missing RTs were censored or truncated. Points were randomly horizontally

shifted to avoid overlap. Lower MAE indicates better parameter recovery.

Credible Intervals.
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Figure A4

Pearson correlations for the LBA
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Note. Pearson correlations (R) between the true linear ballistic accumulator model (LBA) param-

eters and the posterior medians. Colors denote whether missing RTs were censored or truncated.

Points were randomly horizontally shifted to avoid overlap. High correlation indicates better pa-

rameter recovery.



RACE MODEL CENSORING AND TRUNCATION 31

[H]
Figure A5

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Upper Tail and Responses Known
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Figure A6

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Upper Tail and Responses Unknown
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[H]
Figure A7

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Lower Tail and Responses Known
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Figure A8

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Lower Tail and Responses Unknown
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Figure A9

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Upper and Lower Tail and Responses Known
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Figure A10

Linear Ballistic Accumulator Posterior Medians and 95% Equal Tailed Credible Intervals with

Missing Upper and Lower Tail and Responses Unknown
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Figure A11

MAEs for the LNR
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Note. Mean absolute errors over all parameters for the log-normal race model (LNR). Colors denote

whether missing RTs were censored or truncated. Points were randomly horizontally shifted to

avoid overlap. Lower MAE indicates better parameter recovery.
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Figure A12

Pearson correlations for the LNR
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Note. Pearson correlations (R) between the true log-normal race model (LNR) parameters and

the posterior medians. Colors denote whether missing RTs were censored or truncated. Points

were randomly horizontally shifted to avoid overlap. High correlation indicates better parameter

recovery.



RACE MODEL CENSORING AND TRUNCATION 39

[H]
Figure A13

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper Tail and Responses Known
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Figure A14

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper Tail and Responses Unknown
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Figure A15

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Lower Tail and Responses Known
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Figure A16

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Lower Tail and Responses Unknown
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Figure A17

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper and Lower Tail and Responses Known
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Figure A18

Log-Normal Race Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper and Lower Tail and Responses Unknown
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Figure A19

MAEs for the RDM
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Note. Mean absolute errors over all parameters for the racing diffusion model (RDM). Colors denote

whether missing RTs were censored or truncated. Points were randomly horizontally shifted to

avoid overlap. Lower MAE indicates better parameter recovery.
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Figure A20

Pearson correlations for the RDM
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Note. Pearson correlations (R) between the true racing diffusion model (RDM) parameters and

the posterior medians. Colors denote whether missing RTs were censored or truncated. Points

were randomly horizontally shifted to avoid overlap. High correlation indicates better parameter

recovery.
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Figure A21

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper Tail and Responses Known
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Figure A22

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper Tail and Responses Unknown
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Figure A23

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Lower Tail and Responses Known
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Figure A24

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Lower Tail and Responses Unknown
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Figure A25

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper and Lower Tail and Responses Known
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Figure A26

Racing Diffusion Model Posterior Medians and 95% Equal Tailed Credible Intervals with Missing

Upper and Lower Tail and Responses Unknown
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